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SOLUTION OF A PROBLEM IN THE CONTROIL OF 1165
THE MOTION OF NONLINEAR SYSTEMS -

An approximate method is given for solving a problem in the
control of the motion of nonlinear systems. The convergence
of the successive approximations is demonstrated. A pro-
cedure is indicated for implementing the solution of this
problem on electronic analog equipment. As an application
of the method, the problem of the accelerated drive of an

Anschiitz gyrocompass in the meridian is solved when the

o

latter instrument has a nonlinear restoring force.

1. YA. N. ROYTENBERG'S "ZEROING-IN" PROBLEM
TN NONLINEAR SYSTEMS
(REFERENCE 1)

Let the motion of a certain controlled system be described by the follow-

ing type of differential equations:

= ) avu(t) Ty + eWo (s, T2, . -, Tn) ‘i"'h@)‘l' q\'(t)t

W=t

dzy
dt

(v=’1,2,...,n). (l.l)
Here X, are the phase coordinates of the investigated system,fk’(t) are
prescribed external forces, representing continuous functions of the tiﬁe,
qv(t) are additional external forces (control forces), whose law of variation
is yet 10 be determined, gvpﬁt) are known continuocus functions of the time, €

1s some positive parameter.

Numbers in the margin indicate.pagination in the original foreign text.



The system of scalar functions (1.1) is_ equivalent to the matrix equation

%: A(t)x + ¥ (x) + £(2) + a(?),. (1.2)

where i, A(t), \F(x), i), q(t)' denote the following matrices:

x=lavl, A@ =Ilaw()l, W) =1 T(zs 7 ..., 2n) I,
1@) = @, q@) =le@®l (v, o=142,...,n).

Using the symbol @ (t) to demote the fundemental matrix for the matrix

differential equation
iif = A{t)x,- v
at (1.3)

we can transform from the nonlinear matrix differential equation (1.2) to the

nonlinear matrix integral equation

t t |

| x(t),= N(t, to)x (to) + & S N, Qﬁ(x(o))do +‘ S iv(t, o)[f»(o)+ q(o)]do,_l (L.4)
where |
N(t,0) = 0()8(0) | (1.5)
is a matrix weighting function for the matrix differential equation (1.3). 166

9'1(0) denotes in equation (1.5) the inverse matrix of &(o).
Confining our treatment to the case of control forces that remain constant

in the time interval 'bo €£t<g 'tl ’

2. .40, (1.6)

we pose the problem of finding the constent vector gq¥* =|{q * for which the
q L

condition




x() == | (1.7)
is satisfied, where « 1s a prespecified constant vector, tl 1s a predetermined

instant of time.
To solve the problem as stated, we direct our attention to equation (1.4),
according to which the condition (1.7) will be satisfied if the vector q¥* is ‘1

chosen such that the following relation is fulfilled:

tl
e

@ =y — eW-i(t) § N(t, 0)¥(x(0))do,
o (1.8)-(1.9)
() =5(t) + WO +e{ N(t, 0)W(x(0))do, t<<H, |
o 1,

C s o e

where vy, s(#), W_(t)j~ denote the matrices

v=W=()[x—s()],

s(t) = N(t, to)x(to)—{—lg N(t, 0)i(0)do,
to (1.10)-(1.12)
t
W(t)= S N(¢, o) do.

Zy

To determine the vector q¥ from the relations (1.8) and (1.9), we apply

the method of succeséive approximations. For the zeroth approximation, we

assunme

Q= V..

(1.13)

The solution of the nonlinear matrix integral equation ( 1.9) for q* = y or,
vhat is equivelent, the differential equation (1.2) forq (t) =9, will be

symbolized by x O(t).



0
Substituting x (t) into the right-hand side of (1,8) and letting

x0(t). = XOI(&;),"A.'iO..g 0 < t’<_01<'t1 *
(j= 1,2,...,771, 0o = lp, Om == ti)y

(1.14)

we obtain the following expression for the control force vector, which we will

adopt as the first approximation, to wit:

gt =y— Y VW (x%(0))), (1.15)
j=1 :
where

0[ . ‘
Vi— W-i(t)Wi,s Wi= { N{t, 0)do (=1,2.., m), (1.16)

, B

¢

We define the (k + 1)th approximation for the control force vector by 1167
the relation

- n

. o .
g =y — ) eViW(x*(0y)) (k=0,1,2,...),

=t

where

X () =x(0)],_,, G=1,2...,m), ax() (1.17)

is, in turn, the solution of the matrix differential equation (1.2) for
k
a(t) =q -
Consequently, to obtain the successive approximetions, the nonlinear
system (1.2) is first simulated for the prescribed initial conditions and for
0
q (t) =%. The generation of the vectors x (Oﬁ) (3=1, 2,..., m) is ensured

in the course of integration. Substitution of these vectors into the right-

1
hand side of equation (1.15) yields the first approximation q . The subsequent
L



approximations are obtained anslogously. "It is apparent from (1.10) and (1.16)
that in order to determine the matrices 7, VJ, the matrix weighting function

N('bl,o-) must be known. We are aware (ref. 2) that
N(t, 0) = Z*(0). (1.18)

Here Z(o) is the fundamental mé‘brix of the conjugate system

__=_A;((,)z,.. (1.19)

satisfying the condition

Z(t) = E,, (1.20)

where En is a unit metrix of nth renk. The symbols Z (o) and A (o) denote the

transposes of the matrices Z(o) andA(o).

Inasmuch as we only know, at this point, the final values for the vériables
of the conjugate system, in order to determine the metrix weighting function
N (tl,o-) by means of electronic amalog devices it is first of all necessary o
determine the initial values for the variables of the conjugate system so as to
meet the condition (1.20). These can be found by integrating "pack" the
system (1.19) (see, e.g., ref. 2, 3).

For the case when the fundamentsal matrix of the controlled system is con-

stant, we have (ref. L)

N(ty,0) =X(4—0), (1.21)

where X(t) is the fundementel matrix of the matrix differential equation (1.3)

satisfying the condition

X(to) = En (1.22)



Hence it is clear that the matrices y,\TJ in this special case can be

computed without resorting to the conjugate system.

2. PROBLEM OF THE ACCELERATED MERTIDIANAL DRIVE OF
THE ANSCHUTZ GYROCOMPASS

As an application of the method outlined above, we will solve the problem
of an accelerated drive imparted to the AnschWitz gyrocompass in the meridian
when this instrument has a nonlinear restoring force.

The equations of precessional motion of the Anscht@tz gyrocompass, which

sbsorbs natural oscillations by means of air jets, have the form (ref. 5)

__Hd_*_ IPg = HU sin ¢ + Q(¢), H? + (HU cos g)a + NP = 0. (2.1)

Here o is the azimuthal angle of rotation of the gyrocompass, 8 is the
angle of ascent of the southern tip of the gyro rotor above the horizontal
plane. H denotes the kinetic moment of the gyro, (P is the static moment of
the gyro, U is the angular velocity of diurnal rotation of the earth, ¢ is the
latitude of the point of observation, N is the reactive torque due to air pres-
sure, °® which is directed along the axis of the figure, and Q(t) is an addi- L;é@_
tional generalized external force (representing the torque relative to the

eastern axis of the gyro and applied to accelerate the gyrocompass in the

meridian), whose law of variation is subject to determination.

Denoting
i Neing R
nmetpy A=t
: e (2.2)
‘ IPU cos @ N Q(t)
b= 1 = t) = — —=
. H ':,’ 2s H, qi() H }

}



and introducing the nonlinear texn1£¢2(xl) = -exl3, we write the equations of

precessional motion of the Ansch@itz gyrocompass in the following form:

i),
Uposwxz_k_qi() .
2a==— U cos @ z1 — 2sz; + eW2(z1).

k2

x.‘=

(2.3)

The integral equations equivalent to the differential equations (2.3) have

the form
2

21(t) = DX (D2w(0) + 8] Xua(t — o) Ta(ar(0)) do+

p=i 0

| ' 2.h
+{ Xut—0ya(de  (v=1,2), (2.1)

where ny(t) are elements of the fundamental matrix of equations (2.3) for

ql(t) = 0 and € = 0, satisfying the conditions

1 v=ny,

— 19 (2.5)
0 vt (v, p=1,2).,

Xvu(o) = {
We now require that at the time t = tl the gyrocompass be driven in the
meridian, in other words, that

21 (t) = a2(t1) = 0. (2.6)

Since there is only one controlling force aﬁd the number of controlled
phase coordinates is equal to two, we pursue the basic idea of reference 1 and
divide the inmtervel (O, tl) into two equal subintervals, designating qli* and
q, ¥ as the values of the step function a; (t) on the indicated subintervals.

Then, on the basis of equation (2.4) we obtain the following relations for

determining these quantities:



2 i
q”. = ’y”—z Sij.S X‘VZ(ti —_ 0') lpz(xi(()'))d(l’ (] = 1, 2).! (2.7)

v={ 0

Here

- 2 - 2 : ' .
Vij = — ZIWJ‘V.SV, Sy = ZVX\*u(ti)xu(O) (Va j=1,2),

v=1 pu=1 .
«

and W,  ere elements of the inverse matrix of W = I WleH (2 x 2), where

i

t .
W11= S le(ti_U)dO' (V,]'=1,21 TO:Ov 1"1=_21" ‘|72=t1). /i62

‘l’,_’ !

..

This problem was solved with the aid of an e¢lectronic analog for the

following values of the parameters:

k2 = 153921 -10-% sec=1 ,
U cos ¢ =3.646-10-5 lsec-]L 1

s = 297756 - 10—+ Ssec—=', (2.8)
e = 04-10-¢ sec-1l,
H = 290.000 g—cm=secC ,
z '.
0.006\
0004 :
& 1
0002 3 g
\e \ 1200
N
T ANGT RN = sec
L}
Figure 1
The drive time tl = 1800 sec. The initial deviations were
2(0) =03,  z2(0) = 0.004." (2.9)



The electronic analog solution yielded the following results:
 yu = —03962-10-2sec=1 , . (2.10)
iz = —0.6024+10~4 sec-1
which were taken as the zeroth approximation for the step-function force ql(t).
In simulating the system (2.3) in correspondence with the velues of the
parameters (2.8), with the initial conditions (2.9) and force (2.10), we obtain

2110 == 02085, 2,0 = 0.1146, 2,5° — —0.0465, 2,9 = —0.0378, (2.11)
21 = —0.0228, 2, = —0.0045, ‘

where leo are the values of the function xlo(t) at the points t =c. (0. -0 L
J J J-

= 300 sec; J=1; 2,000, 6;(ro =030 = tl).

6
Substituting xlo(t) into the right-hand sides of (2.7) and letting

20t =x®,  Ga<ti<o (=42 .,86),, (2.12)

we obtain the first approximation:

—0.3955-10-3 cex—?, 0t 900 sec
1 ’
ql(t) ={

<
' i 2.1
0.6350-10-% cex—!, 900 ¢ << 18005ec, ¢ (2.13)

With this force acting at the instant tl = 1800 sec, the coordinates xl,
x2 go to zero. The error, normalized to a scale of 100 V, does not exceed 1%.
The process of driving the gyrocompass in the meridian by means of the

force (2.13) is illustrated graphically by the functions I in figure 1.

3. PROOF OF CONVERGENCE OF THE
SUCCESSIVE APPROXIMATTONS

Let us rewrite equations (1.8) and (1.9) in the more general form (time

appearing explicitly in the nonlinear terms)



. ) |
a=v—eW= (t) { N, 0) ¥(x(0),0) do, .

L : (3.1)-(3.2)
x(1) =8() +W(t) 4+ e N(t,9) ¥(x(0),0) do, 6 <t <

ty

According to the approximste method outlined in section 1, we have

L

qt = y—eW-1(t)  Niti, 0)¥ (x(0),0) do, ‘;
! ENCR R
x*(t) = 8(t)+ W(t)y + ¢ S N(t, 0)W (x°(0), 0)do, tp <t < U,
J ,

4

Q= y — eW—1{t) S N(ti, 0)¥ (x* (o), 0)da,

ty ;| } |
Xy {¢) = 8(t) +W(t){v—eW 1 (t‘)g N(ty, )W (xk-(q), a)do}+ ' (3.5)-(3.6) [1_70_

to

1
+eS N(¢, 0)¥ (x*(0), 0)da, to<{t<H (k=1, 2, ...),
ty

To prove the convergence of the successive approximations, we interject
the following postulates:
1) The vector function yr (X ,t) is continuous with respect to all argu-

ments in some closed region D {n + 1)-dimensional space (x , t), where

. - . - e

L DODRx ) = {Ix—20() | <2, L <SESH), (3.7)-(3.8)
2°(t) = s(¢) + W)y

2) In the region D, the vector function ¢ ( x, t) satisfies the Lipshits
r-condition. This means that for any two poimts (x”, t) and (x’, t) of the

region D, the condition

10




I‘F(X”, t) '—"F(xlf t)« = F}X”-—X,:, r = const, (3.9)

is satisfied, where | x | denotes the normal form of the vector x .

3) The parameter € is determined according to the condition

"0 < e<Ey, Eo = min{e, = A/ ME(t; — 1), & =&/ NE(t —to), e}, . (3.10)

where M, N, K indicate the following quantities:

M= AW— i — 3 :
o, IWOWHEN(, 0) |, N = max {N(t0), (3.11)

K= sup |¥(x1)],
(x, )G D

and the numerical value of EO will be determined below.
We will show that under these assumptions, all approximations (3.6) for
0
any tE[to, tl] will fit completely within a tube D2 (x, t)cD.

For this, we rewrite (3.4) in the form

t
¢

x0(t) = 2'(t)+ e \ N(t, o) ¥ (x°(0), 0)do, t5<t <<ty .12
3

t
Applying the iterative method of Picard to the latter (see, e.g., ref 6),
it is not too difficult to show that there exists for it & unique solution,
which is defiped and continuous on the time interval to =t = tl, fitting

completely inside the tube D O(;{, t), i.e.,
A

X0(t) €DO(X, 1) = {|X—~20(t) | < B, to < ¢ << 1) = Doya(x, f) = D. (3.13)

Letting k = 1 in equation (3.6), we obtain

(3.1%4)

Xi(t) = z1(t) e SN(;, )W (x'(0),0)do, o< t<t,
where fo
fl
zt (t) = 8(t)+“;(t){ Y — gW-1 (tl) S N(tl, G)W(XO(G), U)dﬂ' }, tqg‘gt’. ‘[
: no | (3.15

11



We have, on the basis of equations (3.8) and (3.15),

f2t(t) — )| SeME(h—t) <A, H<i<th, (3.16)
whence it follows that (171
(1) 6 DOA(X, t) = {|Xx —29() ] <C A, o << ¢ < 41} = DYi(x, t) = D. (3.17)

Then, as mentioned above, there exists for equation (3.1&) a unique solu-~
tion, defined and continuous on the interval'ﬁ)s t < tl, fitting entirely

1
within the tube DA(X , t), i.e.,
xI(t) €Da(x, 1) = {[x— 2 ()| < b, o<t < ). (3.18)

Bearing in mind equations (3.16) and (3.18) and relying on the following

inequalities for the normal forms:

[xt(t) —20() | < |x'() — 2t (2)} + |21 (1) —22(D) ],
we obtain

IX‘(t)—Z_O(i)‘ <2, H<t<h,, (3.19)

whence it follows that
x'(t) €D%a(x, 1) = D., (3.20)

Applying the method of mathematical induction fo equation (3.6), it is
readily shown that all approximestions will fit entirely within the tube
0
t)
D oA ( X ) D.

Subtracting (3.4) from (3.14), we obtain

4

%109 =200 =| = W OW(0) § Nit 0) ¥ ((0), 0)do +
t ’ . ’ t
+eS N(t, o)[¥ (x!(0), 0 — ¥ (x°(0), 0)ldo \ <A+ aNrS [ x!(0) — x°(0) | do, S

ty ty

12




or

[x1(2) —x°() | << Aexp [eNr(4, — 1)), | th <t < b (3.21)

Setting k = 2 in equation (3.6) and subtracting (3.14) from (3.6), we

obtain L
[x2(t) —x1(t) | = [eW()W-i(¢) \‘ N4, 0)[¥ (x0(0)0) — ¥(x!(0), 0)]ldo+
ty '
t .
+e§N(t, 0) ¥ (x2(0), 6) — W (x!(0), 0)ldo | <A exp{eNr(t, — to)leMr(t, — to)+
fo
‘ i
+eNr§ | x2(0) — x1(0) | do, to<<t<t ' !
i :
or

|x2(t) — x'(t)| << A exp [eNr(ti — to){eMr{t, — to) exp [eNr (2, — ta)]},.
<t <t (3.22)

Applying mathematical induction, the wvalidity of the following estimations
is easily established:

IxM(ty — xh=1(2) | << Aexp [eNr(t, — to) {eMr (¢, — to) exp [eNr(t — to)P*—,

h<<t<t, (k=12 .). (3.23)
Denoting
Q(e) = eMr(t; — to) oxp{eNr(t, — to)], (3.24)
we conclude that the series
AVGXP [;Nra;— )]+ b exP‘[;;VkI‘(th'— )]Q(e) + A exp [E;Nritl — 4)]Q%e) + .. (3.25)

converges (by virtue of the D'Alembert test) under the stipulation that

0< Q(e) < 1. (3.26)
Tnasmuch as all terms of the series

(1) —x0(0)] + D) — X (O] + 123 (1) — ¥ ()] +.. (3.27)

13




are less in normal form than the corresponding terms of the series (3.25), the[lzg
series (3.27) not only converges, it converges uniformly for all tlE[to, tl,]by
virtue of the Welerstrass criterion.

Because each term of the series (3.27) is a continuous vector time function,
the 1limit of the sequence {xk(t)} exists and is a continuous wvector time

function:

: ,}iéxh(zj‘=x(c) GD%(x, ty = D.

(3.28)

Bearing in mind equations (3.5) and (3.6) and passing to the limits as
k — o, it is readily seen that the vector function X (%) satisfies the matrix

integral equation (3.2), and

. Iimkqhv+!=q :

ko (3.29)

satisfies the relation (3.1).
It still remains for us to explain at what values of € the condition
(3.26) will be fulfilled.
A graph of the function Q(é) is illustrated by the heavy curve in figure 2.

Tt is easily shown that the curve of Q(€) is tangent to the straight line

Qu=Mr(t —to)e (3.30)
at the origin.
Q ;
-t AQ
/"J\v\)"\ > !
0 & 5
Figure 2

1h
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Then the curve of Q(e) necessarily intersects the straight line Q2 =1 at
some point € = eo. The value of eo is that value which figures in the condition
(3.10).

Thus, under the conditiomns 1), 2), and 3), the convergence of the succes-
sive approximations has been proven.
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